
Trust Implications of DDoS Protection in Online
Elections

Chris Culnane1, Mark Eldridge2, Aleksander Essex3, and Vanessa Teague4

1 Department of Computer and Information Systems
University of Melbourne

christopher.culnane@unimelb.edu.au
2 School of Computer Science

University of Adelaide
mark.eldridge@student.adelaide.edu.au

3 Department of Electrical and Computer Engineering
University of Western Ontario

aessex@uwo.ca
4 Department of Computing and Information Systems

University of Melbourne
vjteague@unimelb.edu.au

Abstract. Online elections make a natural target for distributed de-
nial of service attacks. Election agencies wary of disruptions to voting
may procure DDoS protection services from a cloud provider. However,
current DDoS detection and mitigation methods come at the cost of sig-
nificantly increased trust in the cloud provider. In this paper we examine
the security implications of denial-of-service prevention in the context of
the 2017 state election in Western Australia, revealing a complex interac-
tion between actors and infrastructure extending far beyond its borders.

Based on the publicly observable properties of this deployment, we out-
line several attack scenarios including one that could allow a nation state
to acquire the credentials necessary to man-in-the-middle a foreign elec-
tion in the context of an unrelated domestic law enforcement or national
security operation, and we argue that a fundamental tension currently
exists between trust and availability in online elections.

1 Introduction

Democratically elected governments may still aspire to the old principle of being
of the people, by the people, and for the people. But when it comes to contem-
porary deployments of internet voting, the technology underpinning how gov-
ernments are elected is a different story, and we are beginning to observe local
elections carrying an increasingly multi-national footprint.

In this paper we present an analysis of the 2017 state election of Western
Australia (WA) as one such case study. We found a complex interaction be-
tween jurisdictions extending far beyond WA’s borders. The election software
was created by a Spanish based company. The election servers were hosted in

the neighbouring state of New South Wales. Voters connected to the election
website via a U.S. based cloud provider. They were presented with a TLS certifi-
cate that was shared with dozens of unrelated websites in countries such as the
Philippines, Lithuania, and Argentina, and that was served out of data centers
in countries such as Japan, Poland, and China.

In particular this work focuses on the implications of cloud-based distributed
denial of service (DDoS) protection in an election setting, revealing the existence
of a tension between availability and authentication.

1.1 Background

The acceptance of an election result should not come down to trust, but it often
does. Some systems, such as fully scrutinised manual counting, Risk Limiting
Audits [13] and end-to-end verifiable cryptographic systems [3, 5, 7, 16, 11, 12],
allow voters and observers to derive evidence of an accurate election result, or
to detect an inaccurate result.

Australia’s iVote Internet voting system, implemented by third-party vendor
Scytl, does not provide a genuine protocol for verifying the accuracy of the
election outcome, relying instead on a collection of trusted and semi-trusted
authorities and auditors [10]. At the time of writing, it is the largest continuing
Internet voting system in the world by number of votes cast.5 The Western
Australian run was, however, very small: about 2000 votes were received, out of
an electorate of 1.6 million. Election day was March 11th 2017, but iVote was
available during the early voting period starting on 20th February.

For recent elections conducted in the Australian states of Western Australia
and New South Wales, the iVote system was used in conjunction with Imperva
Incapsula, a global content delivery network which provides mitigation of Dis-
tributed Denial of Service (DDoS) attacks.

DDoS attacks involve using a large number of connections to flood a target
website, overloading systems and preventing legitimate users from logging in. It
was a DDoS attack which was blamed for the failure of the Australian Govern-
ment online eCensus system in August 2016 [14, 4]. To mitigate these attacks,
Incapsula’s systems act as a TLS proxy, intercepting secure connections between
the voter and the iVote servers and filtering malicious traffic.

Following our analysis of the unintended consequences of TLS proxying in the
Western Australian Election, a subsequent by-election in New South Wales used
Incapsula only for registrations and demonstration of iVote, not for the actual
voting process itself. However, valid TLS certificates for the Western Australian
and New South Wales election systems continue to be served by Incapsula servers
all over the world. This illustrates the difficulty of reversing a decision to out-
source trust.

5 The largest as a fraction of the electorate is Estonia’s.

Contributions. Our contributions are threefold. Firstly, we provide an analysis
of the front-end iVote protocol, including the associated credential exchange and
key derivation.

Secondly, we analyse the implications of running an internet voting system
through a cloud based DDoS protection service acting as a non-transparent TLS
proxy. We provide the results of a global scan to assess the scale with which
Western Australian election related TLS certificates had been globally deployed.
We identify and discuss the misconfigurations we discovered in the case of the
Western Australian state election 2017, and analyse the feasibility of a malicious
TLS proxy performing a brute force attack on voter credentials.

Finally, we examine the injection of JavaScript performed by the DDoS pro-
tection service, and provide a proof of concept of how this could be utilised by
a malicious entity to compromise voter credentials and modify ballots. We dis-
closed our findings to the Western Australian Electoral Commission, both before
and during the election. They addressed the server misconfiguration, but con-
tinued to use the cloud based DDoS protection service for the duration of the
election.

Paper Organization. The rest of the paper is organized as follows. Section 2
describes the iVote protocol, and how a voter’s cryptographic credentials can
be recovered by a man-in-the-middle observing messages exchanged between the
client and iVote server. Section 3 describes technical findings of the cloud-based
DDoS protection service, focusing on their certificate management practices.
Based on these findings Section 4 proposes two attack scenarios that could al-
low the cloud provider (or a coercive entity) to man-in-the-middle an election.
Section 5 presents additional findings and Section 6 concludes.

2 The iVote Protocol

In this section we describe the iVote protocol. In particular we observed that
partial votes are sent—and stored on the server—encrypted by a symmetric key
which is only protected by a key derived from the voter’s ID and PIN. As we
shall discuss, this leads to the potential to recover votes via a brute force attack
of the iVoteID or PIN. When combined with the wider issue of using the same
TLS Proxy for registration as voting, the brute force attack becomes viable.

2.1 Key Findings

In iVote the secret keys used to construct an encrypted and digitally signed ballot
are cryptographically derived from two values: a voter’s ID and PIN. Knowledge
of these two values is sufficient information to allow an attacker to impersonate
a voter and cast a valid ballot on their behalf. iVote seemingly acknowledges the
sensitivity of these values

The key finding of this section is that the iterative hashing scheme used by
iVote to protect the ID / PIN pair can be brute forced in practice by a man-in-
the-middle observing messages exchanged between a voter’s client and the iVote
server. While transport layer security (TLS) protects these values from the view
of most network observers, as we explain in Section 3, the non end-to-end nature
of TLS in DDoS prevention exposes these values to the cloud provider.

2.2 Methodology

Publicly available technical documentation of the iVote system as deployed
in WA is limited. Significant information about the system and its configura-
tion, however, can be observed from its public internet-facing components via a
demonstration website set up by the Western Australian Electoral Commission
(WAEC) to allow voters to practice voting. To test the implementation we cre-
ated our own local server based on the publicly available JavaScript. There were,
however, two main limitations to this approach: (1) the practice website did not
include the registration step, and as such we were unable to observe network
messages exchanged during this phase, and (2) the responses by the practice
iVote server were mocked, and may not convey the full functionality of the live
election website. Following our initial analysis, we contacted the WEAC on Feb
17th, 2017 with a report of our findings, which WAEC acknowledged the same
day.

2.3 Voter Experience

An iVote election has three main phases:

1. Registration. A voter visits a registration website, enters her name, her
registered address and her date of birth. She may possibly be asked for
further identifiers such as a passport number. She then chooses and submits
a 6-digit PIN, which we will refer to as PIN. An 8-digit iVote ID number,
which we will refer to as iVoteID, is sent to her via an independent channel
such as by post or SMS.

2. Voting. The voter visits the voting website and enters her iVoteID and her
PIN. Her vote is encrypted in her browser using JavaScript downloaded over
TLS from the voting server. If she wishes, she may pause voting and resume
later—to facilitate this, a partially-completed vote is stored (encrypted) on
the server while she is voting. When she submits her vote, she receives a
12-digit receipt number.

3. Verification. All submitted votes are copied to a third-party verification
server. After voting, the voter may call this service, enter her iVoteID, PIN
and Receipt number, and then hear her vote read back to her.

2.4 Protocol Overview

A complete overview of the protocol is both beyond the scope of this paper, and
beyond what can be observed from the public-facing elements of the system. We

do, however, have sufficient information to outline how a brute force attack to
recover voter credentials could proceed. A high-level overview of login and ballot
casting is depicted in Figure 2.4, with additional details as follows.

Login. The voter first enters their iVoteID and PIN into the login page in the
browser. A cryptographic key derivation implementation in client-side JavaScript
then uses these values to derive a value, voterID, as follows. First a string is cre-
ated of the form iVoteID + "," + Base64(SHA256(PIN)) + "," + "voterid".
This string is used as the password input to the password-based key derivation
function PKCS#5 PBKDF2WithHmacSHA1. The function uses the generated pass-
word along with a salt of 20 null bytes; it performs 8000 iterations and outputs
a key of length 16 bytes. The result is hex encoded before being posted to the
server as voterID.

The purpose for this seems to be to protect the iVoteID and PIN by not
sending them to the server directly. However, as we discuss in Section 2.6, this
protection is insufficient as it is computationally feasible to recover these values
from voterID through brute-force search.

Voter Credentials. If the voterID submitted to the server corresponds to a
registered voter, the server responds with a file credential.json. An outline of
this file is shown in Listing 1. The demo system uses an internal mocked response
for a sample user, however we conjecture the real election server simply stores a
database of voterId/credential.json pairs, and responds with the associated
credential.json whenever a valid voterID is presented.
The vad object contains a number of keys and certificates. The vk object rep-
resents a Scytl KeyStore, which combines a PKCS#12 keystore with a JSON
object of encrypted secrets. The underlying PKCS#12 keystore is protected by
what the code refers to as the long password. The first step to deriving the
long password is to derive an AES key to decrypt the password contained in
vkp. To do this a string is created similar to the one created during the lo-
gin phase. This string has the form: iVoteID + "," + Base64(SHA256(PIN))

+ "," + "passKS". The string differs from the one constructed at login time
using the suffix “passKS” instead of “voterid”.

This password string, along with the salt value in vkp, is passed to another
instance of PKCS#5 PBKDF2WithHmacSHA1 that performs 8000 iterations. The
result is a 16-byte key, which is then used to initialise an AES cipher, using
GCM (Galois/Counter Mode) with no padding. The GCM nonce length is 12
bytes and the tag length is 16 bytes. The nonce is the first 12 bytes of the
password value stored in vkp. The remaining value of vkp is decrypted to form
what the code calls the derived password.

The long password is finally generated by a PBKDF2WithHmacSHA1 that per-
forms a single iteration on the derived password along with the salt value from vk,

5 This is an instance of a PKCS#5 PBKDF2WithHmacSHA1 function, with a salt consisting
of 20 null bytes, performing 8000 iterations, and generating a key of 16 bytes

V
o
ter

B
row

ser
C

lo
u

d
iV

ote
S

erver

8
-d

ig
it

iV
o
te

ID
:
I
D

,
6

d
ig

it
P

IN
:P
I
N

v
o
te

rID
=

P
B
K
D
F
2
(
I
D
‖
S
H
A
2
5
6
(
P
I
N
)‖

"
v
o
t
e
r
i
d
"
)

v
o
te

rID

c
r
e
d
e
n
t
i
a
l
.
j
s
o
n

p
a
ssK

S
=

P
B
K
D
F
2
(
I
D
‖
S
H
A
2
5
6
(
P
I
N
)‖

"
p
a
s
s
K
S
"
)

d
k

=
P
B
K
D
F
2
(
D
ec

p
a
s
s
K
S (
c
r
e
d
e
n
t
i
a
l
.
j
s
o
n
-
>
v
k
p
)
)

k
p

=
D
ec

d
k (
c
r
e
d
e
n
t
i
a
l
.
j
s
o
n
-
>
v
k
-
>
s
e
c
r
e
t
s
)

s
k

=
D
ec

p
a
s
s
K
S (
c
r
e
d
e
n
t
i
a
l
.
j
s
o
n
-
>
v
k
-
>
s
t
o
r
e
)

r
e
s
p

=
c
r
e
d
e
n
t
i
a
l
.
j
s
o
n
-
>
c
h
a
l
l
e
n
g
e
o
b
j
e
c
t‖

n
o
n
c
e

re
sp
‖
sig

n
s
k
(re

sp
)

t
o
k
e
n
.
j
s
o
n

P
a
rtia

l
V

o
te

P
re

fe
re

n
c
e
s:

P
r
e
f
s

A
E
S
k
p (
P
r
e
f
s
)‖

S
i
g
n
a
t
u
r
e

F
in

a
l

V
o
te

P
re

fe
re

n
c
e
s:

P
r
e
f
sp
k
←

t
o
k
e
n
.
j
s
o
n

b
a
llo

t
=

E
n
c
p
k
(P

r
e
f
s
)b
a
l
l
o
t
‖
S
ig
n
s
k (
b
a
l
l
o
t
)

F
ig

.
1
.

iV
o
te

P
ro

to
c
o
l.

H
ig

h
-lev

el
ov

erv
iew

o
f

lo
g
in

a
n
d

b
a
llo

t
ca

stin
g

p
ro

to
co

l
(n
.b.,

so
m

e
d
eta

ils
o
m

itted
fo

r
b
rev

ity
).

T
h
e

T
L

S
co

n
n
ectio

n
is

n
o
t

en
d
-to

-en
d

b
etw

een
th

e
b
row

ser
a
n
d

iV
o
te

serv
er,

ex
p

o
sin

g
b
ru

te-fo
rcib

le
v
o
ter

cred
en

tia
ls

to
th

e
clo

u
d

p
rov

id
er.

1 {

2 "v": "1",

3 "challenge_object": "Base64 Challenge Object",

4 "vad": {

5 "vk": "{

6 "salt": "Base64Encoded Salt",

7 "secrets": {

8 "symmetric": "Base64Encoded AES Key"

9 },

10 "store": "Base64Encoded PKCS12 KeyStore"

11 }",

12 "vkp": "Base64Encoded salt and password for KeyStore",

13 "eeca": "Base64Encoded CA Certificate",

14 "svca": "Base64Encoded CA Certificate",

15 "azca": "Base64Encoded CA Certificate",

16 "ab": "Base64Encoded Certificate to Verify XML Signatures",

17 },

18 "cert": "Base64Encoded Client Certificate"

19 }

Listing 1: Voter Credential File Skeleton

yielding a 16 byte key. This value is used as both a password for the PKCS#12 key
store, and as an AES Key to decrypt the values in the secrets object. The keys in
the secrets object in vk are Base64Encoded ciphertexts. The long password is
used to initialize an AES Cipher using GCM with no padding. The GCM nonce
length is 12 bytes and the tag length is 16 bytes. The nonce is the first 12 bytes
of the value in the secrets object, with the remainder being the ciphertext that
is to be decrypted.

The final outcome of this intricate sequence of client-side key derivations and
decryptions is an AES symmetric key kp which is used by the browser to encrypt
partial votes, which we will continue in further detail in Section 2.5.

Token. The credential.json file is further processed and the contents ex-
tracted, in addition the server’s signature on the received challenge is verified.
In response to a valid signature, the browser generates a random nonce, con-
catenates it with the server’s challenge, and returns this as a signed message.
The purpose of this check appears to be a means of confirming that a client has
successfully recovered their private signing key in the keystore.

The response is posted to vote-encoder/token/{voterKeysId}?v=1 where
v is taken from the configuration file, and voterKeysId comes from the voter
certificate common name, which contains the string “VoterAuth ” followed by
the votersKeysId. The voterKeysId value is important because it is used dur-
ing all subsequent posts, including voting and partial votes. It is unclear how
this value is derived or who generates it, but we suspect it is generated by the
registration server during the credential file generation.

vote-encoder/token/{voterKeysId}?v=1

Finally, the server responds to the token post with token.json that contains
the public-key group parameters for encrypting ballot preferences, the Election
Markup Language for the various races, and any partial votes that have been
recorded. The specifics of the encryption and signature of voter ballot preferences
are outside the scope of this paper.

2.5 Partial Votes

When a voter completes a voting screen, either the Legislative Assembly (lower
house) or Legislative Council (upper house), a partial vote of all currently en-
tered preferences is created and sent to the server. The submission is sent to
vote-encoder/partial_vote/{voterKeysId}?v=1, with JSON object shown
in Listing 2. The eo string is encrypted with the secret key contained in the

1 {

2 "token":"Base64 Copy of Token from Server",

3 "eo":"Base64 Encrypted String",

4 "signature":"Base64 Siganture of Vote",

5 "cert":"Base64 Encoded PEM Certificate of Voter Sign cert"

6 }

Listing 2: Partial Vote Skeleton

secrets object in credential.json, which was extracted as part of the cre-
dential file processing, discussed in the previous section. When a partial vote
is contained within the Token Response the same AES key contained in the
secrets object is used to decrypt its contents and restore the screen for the
user. The crucial consequence of this is that unlike the final vote which is sub-
mitted under the encryption of a randomly generated AES key, which is in turn
encrypted with the public key of the election, the partial vote is only protected
by the AES key stored in the credential file.

Given that the credential file itself is only protected by the an encryption key
derived from the iVoteID and PIN, if the iVoteID and PIN are susceptible to
brute force attacks, both the receiving server, and any TLS proxies in between,
would have the ability to recover votes. The attack is not mitigated by the fact
the final vote could be different, since the partial votes are always submitted as
the voter moves between the screens, and as such, the attacker need only look
for the last partial vote submission prior to final submission to be sure of the
contents of the final vote.

2.6 Brute Forcing Voter Credentials

One important question is how hard it would be for a man-in-the-middle to
recover a voter’s credentials from observed messages exchanged between the

vote-encoder/partial_vote/{voterKeysId}?v=1

browser and iVote server. Since WA opted to disable re-voting for their election,
a near real-time attack capability is needed in order to construct a valid (but
malicious) ballot and transparently swap it into the voter’s session before they
can cast. We now show that this requirement can feasibly be satisfied in practice.

As described in Section 2.4 the voterId value sent by the browser at login
time is derived from the voter’s iV oteID and PIN , and knowledge of these
values would be sufficient to recover all the voter’s other cryptographic values
from credential.json and token.json files.

Recall the voterID value is essentially 8000 iterations of SHA1 applied to
iV oteID, an 8-digit system-assigned value concatenated with PIN , a 6-digit
user-chosen value. This implies a brute-force upper bound of

8 · 103 · 108 · 106 ≈ 260

operations. In other words, the voterID value provides 60 bits of security in the
best case.

This falls well below the minimum recommended NIST 112-bit security level [15].
As a comparison, at the time of writing the Bitcoin network was able to perform
262 SHA1 hashes per second.6

In practice, however, the voterID space may not be uniformly distributed.
Only a few thousand iV oteIDs were actually used. Moreover since the regis-
tration server is also covered by the DDoS cloud provider, we may assume that
a man-in-the-middle would also be able to observe the set of iV oteIDs in the
context of the registration step and associate an ID with a unique IP address.
Under the assumption of a known iV oteID, the search space to recover the
voter’s credential would be

8 · 103 · 106 ≈ 233

hashes. This space could be searched nearly instantly using a moderately sized
GPU cluster. For example, contempoary bitcoin mining ASICs now achieve hash
rates in the tera-hash-per-second (i.e., > 240) range. Investment in expensive
and difficult to procure custom hardware, however, is not necessary. The rise
of inexpensive elastic cloud computing puts this attack within reach of nearly
any budget, and recent work has examined offering crypto brute forcing as a
service. Heninger et al. [18], for example, have deployed hundreds of concurrent
instances on Amazon EC2 in pursuit of factoring RSA moduli.

As a more immediate timing comparison demonstrating the real-world feas-
bility of this attack, we implemented our own program to brute force voterIDs in
a threaded Python program using the Hashlib implementation of PBKDF2 and
deployed it on Digital Ocean. Using a single 20-core droplet, our unoptimized
(non-GPU) implementation was able to recover a 6-digit PIN in approximately
7 minutes at a cost of USD $0.11. With 10 concurrent droplets (Digital Ocean’s
default account max) the time to recovery is less than 1 minute, which we be-
lieve would plausibly be less than the time taken by the average vote to read,

6 https://blockchain.info/stats

https://blockchain.info/stats

mark and cast a ballot. Using a GPU-optimized hashing implementation (e.g.,
Hashcat), however, we expect this time can be reduced to the millisecond range
while retaining a comparable cost of pennies per recovered credential.

3 Distributed Denial of Service Protection

Imperva Incapsula is a US-based cloud application delivery company which pro-
vides numerous security services to websites including prevention and mitigation
of DDoS attacks. In this section we present a technical analysis of relevant as-
pects of their service as used by the Western Australian Electoral Commission
(WAEC) for the 2017 WA State Election.

3.1 Key Findings

Our key finding in regards to the DDoS prevention service deployed in the 2017
WA State Election are threefold:

1. Encryption is not end-to-end between the voter and the iVote server;
2. The cloud provider’s practice involves the bundling of dozens of unrelated

website domains into a single certificate’s subject alternate name (SAN) list;
and

3. An internet-wide scan we conducted found valid TLS certificates for the
election website being served by servers around the world.

Taken together we argue that this opens the possibility of a foreign nation being
able to obtain the private key necessary to man-in-the-middle WA voters through
an unrelated domestic law enforcement or national security operation. It also
risks compromising the election as a result of error or malfeasance by server
administrators all over the world.

Additionally, we discovered that the system initially deployed for the election
did not correctly protect against DDoS attacks, despite the presence of Incap-
sula’s DDoS mitigation service. Due to misconfiguration of the iVote server, we
were able to determine the true IP address for the WA iVote server via histori-
cal domain registrations for the NSW iVote system used in 2015, which was also
being used to host the WA iVote system.

Upon discovering this vulnerability we notified the WAEC, who reconfigured
the server to stop accepting connections that did not originate from Incapsula’s
systems.

3.2 Non End-to-End TLS

In a typical TLS handshake the server presents its certificate to the client. Com-
pleting a TLS handshake takes time, and saving the session state requires the
server allocate memory. This and other strategies allow attackers with with ac-
cess to numerous hosts to overwhelm a server by flooding it with connection

iVoteIncapsulaVoter

TLS Connection 1

Certificate 1
Issuer: GlobalSign
Subject: incapsula.com
SAN: *.elections.wa.gov.au

TLS Connection 2

Certificate 2
Issuer: COMODO
Subject: *.elections.wa.gov.au

Fig. 2. Non end-to-end TLS. Communication between a voter’s browser and the
iVote server pass through an Incapsula server and are decrypted, inspected, and re-
encrypted under a different key.

requests. When a DDoS mitigation service is involved, the TLS handshake is
slightly altered to allow the service to identify and filter malicious requests by
forcing incoming connections to be made through its infrastructure before being
forwarded on to the destination in a separate connection. The result is that the
service provider becomes an intermediary for all traffic to the iVote server.

Incapsula’s DDoS mitigation service operates by placing Incapsula servers
between the user and the destination website as a non-transparent TLS proxy,
intercepting all communications to and from the website in order to filter mali-
cious connections. For example, when connecting to the iVote Core Voting Sys-
tem (CVS) at https://ivote-cvs.elections.wa.gov.au, the voter’s connec-
tion first travels to a server owned by Incapsula where it is decrypted, scanned,
and then forwarded on to the iVote server managed by the WAEC. This inter-
action is shown in Figure 2.

Nominally, if the iVote server was correctly covered by DDoS prevention,
we should not have been able to observe its certificate, as the server would
ignore any connection originating from a non-Incapsula IP address7. However,
a misconfiguration of the iVote server made it possible to identify its true IP
address, allowing us to request its TLS certificate directly. This issue is discussed
in more detail in Section 5.2.

The interception of connections allows Incapsula to filter out malicious traf-
fic during DDoS attacks, but also allows Incapsula to see all traffic travelling
through their systems. This behaviour is by design: modern DDoS mitigation
methods rely on scanning the plaintext traffic being transmitted to the server
they are protecting [20, 2]. Without this ability, they would have a much harder
time determining the good connections from the bad ones. What it means, how-
ever, is that the voter’s interaction with the voting server exists as plaintext at
some point after leaving the voter’s computer, but before reaching the election
servers.

7 https://www.incapsula.com/blog/make-website-invisible-direct-to-

origin-ddos-attacks.html

https://ivote-cvs.elections.wa.gov.au
https://www.incapsula.com/blog/make-website-invisible-direct-to-origin-ddos-attacks.html
https://www.incapsula.com/blog/make-website-invisible-direct-to-origin-ddos-attacks.html

incapsula.com, *.1strongteam.com, *.absolutewatches.com.au, *.advancemotors.com.au,
*.alconchirurgia.pl, *.amplex.com.au, *.bohemiocollection.com.au,
*.cheapcaribbean.com, *.compareit4me.com, *.elections.wa.gov.au, *.everafterhigh.com,
*.farmerslifeonline.com, *.floraandfauna.com.au, *.heypennyfabrics.com.au,
*.homeaway.com.ph, *.jetblackespresso.com.au, *.lifemapco.com, *.lovemyearth.net,
*.maklernetz.at, *.mobile-vertriebe.de, *.mobile.zurich.com.ar, *.monsterhigh.com,
*.mycommunitystarter.co.uk, *.noosacivicshopping.com.au, *.oilsforlifeaustralia.com.au,
*.planetparts.com.au, *.purina.lt, *.redsimaging.com.au, *.rlicorp.com,
*.roundup.fr, *.sassykat.com.au, *.spendwellhealth.com, *.sublimation.com.au,
*.uat.user.zurichpartnerzone.com, *.woodgrove.com.au, *.yamahamotor-webservice.com,
*.zlaponline.com, *.zurich-personal.co.uk, *.zurich.ae, *.zurich.co.jp,
*.zurich.es, *.zurich.jp, *.zurichlife.co.jp, *.zurichseguros.pt, 1strongteam.com,
absolutewatches.com.au, advancemotors.com.au, alconchirurgia.pl, amplex.com.au,
bohemiocollection.com.au, compareit4me.com, farmerslifeonline.com,
floraandfauna.com.au, heypennyfabrics.com.au, homeaway.com.ph, jetblackespresso.com.au,
lifemapco.com, lovemyearth.net, mycommunitystarter.co.uk, noosacivicshopping.com.au,
oilsforlifeaustralia.com.au, planetparts.com.au, purina.lt, redsimaging.com.au,
roundup.fr, sassykat.com.au, spendwellhealth.com, sublimation.com.au, woodgrove.com.au,
zurich.ae, zurich.es, zurich.jp, zurichlife.co.jp

Fig. 3. Subject alternate names in the Incapsula certificate. The same digital
certificate used to prove the identity of *.elections.wa.gov.au to WA voters is also
used to prove the identity of websites listed above. This list was transient and changed
several times in the month leading up to election day.

This fact is problematic since TLS authentication remains the only meaning-
ful form of server authentication in iVote, and using a cloud provider for DDoS
protection necessarily outsources this trust. Putting valid keys on a variety of
third-party servers throughout the world brings all of them into the set of trusted
parties, and increases the likelihood of a key leaking. Furthermore, ballot secrecy
in iVote depends critically on the assumption that a voter’s identity disclosed
during registration cannot be linked with a cast ballot making non end-to-end
encryption a concern in this matter as well.

3.3 Large-scale Certificate Sharing

DDoS protection need not require a customer to surrender its private keys to
the cloud provider [20, 2]. Instead, Incapsula outwardly presents their own cer-
tificate in the handshake, which includes the iVote server’s domain (ivote-cvs.
elections.wa.gov.au) in the Subject Alternate Name (SAN) extension of their
certificate. Specifically Incapsula includes the wildcard domain *.elections.

wa.gov.au in the SAN.
Obtaining this secondary certificate is a financial expense, and Incapsula

shares one certificate among numerous websites in order to reduce cost [20].
Specifically it lists itself as the certificate’s subject, and packs numerous domains
of its customers’ into a single certificate’s SAN. When a WA voter visits the iVote
website https://ivote-cvs.elections.wa.gov.au, their browser is presented
with a certificate with dozens of other unrelated domains in the SAN. A list
of these domains is given in Figure 3, and includes websites for widely varying
sectors and countries of origin.

ivote-cvs.elections.wa.gov.au
ivote-cvs.elections.wa.gov.au

Through a combination of collecting our own TLS handshakes with the iVote
server as well as Censys[9] data we observed this certificate over a two month
period prior to the election and found the SAN list changed several times, pre-
sumably as some clients joined and others left. For example, on Feb 1st the
SAN included several casinos (pandora-online-casino.com,caribiccasino.
com, regalo-casino.com,doublestarcasino.com), but they disappeared shortly
after. Importantly, visitors to any of these other websites are, in turn, presented
with the same certificate.

3.4 International Certificate Footprint

Incapsula’s global network consists of 32 data centres (Points of Presence, or
PoPs), located across the Americas, Europe, the Middle East, and the Asia Pa-
cific region.8 Due to the design of Incapsula’s network, TLS certificates hosted in
one PoP are propagated worldwide, so that users in any region served by Incap-
sula can have their connection proxied by the nearest PoP available. As stated by
Incapsula:9 “When using Incapsula, our servers become the intermediate for all
traffic to your website, including SSL traffic. To facilitate this, Incapsula needs
a valid SSL certificate for your domain installed on all its servers worldwide.”

We found Incapsula servers serving valid TLS certificates for *.elections.
wa.gov.au from locations around the world, including Eastern and Western
Europe, China, North and South America, and various points in Australia.

These servers were identified through domain name look-ups for ivote-cvs.
elections.wa.gov.au originating from within each country, and subsequent
TLS connections, using a Virtual Private Network (VPN). Our timing analysis
strongly indicates that the TLS certificates were being served directly by these
servers, and not proxied from elsewhere.

Internet Scan. We conducted an internet wide scan of the IPv4 space on
election day (March 11, 2017), collecting all TLS certificates served over port 443
using zgrab.10 In total we found 153 distinct IPs serving certificates containing
*.elections.wa.gov.au in the subject alternate name. A traceroute and timing
analysis showed that these IPs were consistent with cities in which Incapsula
advertises data centers.8 We were able to identify points of presence serving
WA’s certificate in Australia, Canada, China, France, Germany, Japan, Poland,
Singapore, Spain, Switzerland, United Kingdom, and throughout the United
States.

4 Man in the Middle Attack Scenarios

In this section we outline two scenarios in which a man-in-the-middle could
recover credentials necessary to be able to cast a valid ballot on a voter’s behalf.

8 https://www.incapsula.com/incapsula-global-network-map.html
9 https://www.incapsula.com/blog/incapsula-ssl-support-features.html

10 https://github.com/zmap/zgrab

*.elections.wa.gov.au
*.elections.wa.gov.au
ivote-cvs.elections.wa.gov.au
ivote-cvs.elections.wa.gov.au
https://www.incapsula.com/incapsula-global-network-map.html
https://www.incapsula.com/blog/incapsula-ssl-support-features.html
https://github.com/zmap/zgrab

4.1 Modify the Scripts the DDoS Provider is Already Injecting

Overview and Significance. In this first scenario, a malicious cloud provider
injects Javascript into the voter’s client with the aim of capturing their creden-
tials. Since the cloud provider sits between the voter and iVote server, injecting
a malicious script is an obvious but risky approach for the cloud provider if both
the presence the script and its malicious purpose were detected. The significance
of our particular attack scenario, however, makes use of the following observa-
tions: (1) the cloud provider is already rewriting server content to injecting their
own JavaScript as part of their DDoS profiling functionality, and (2) the script
payloads are already being obfuscated.

We created a proof-of-concept vote-stealing script that leaks the voter’s ID
and PIN in the tracking cookie, and incorporated it into the script already being
injected by the cloud provider at no increased file size.

Script Injection for System Profiling. When a voter connects to the iVote
WA Core Voting System using the address https://ivote-cvs.elections.wa.
gov.au, the connection is proxied through Incapsula’s servers using an Incapsula-
controlled TLS certificate. The initial response to a voter’s connection sets a
number of Incapsula cookies.

In addition the response is modified by Incapsula to include JavaScript code
at the end of the HTML response. The included code inserts a <script> element
to cause the browser to load an additional JavaScript file, the contents of which
are obfuscated as a string of hex values. The included code is designed to perform
fingerprinting of the voter’s system. The HTTP responses for the resource files
do not contain x-cdn or x-iinfo headers, strongly suggesting they are served by
the Incapsula proxy (as would be expected), rather than by the iVote server.

When expanded into a more readable format, the injected JavaScript code is
revealed as a tracking function. The code is designed to probe various parts of the
voter’s computer, including: the web browser they are using; any browser plugins
they have installed; the operating system being used; their CPU type; and other
information designed to fingerprint individual user connections. Additionally,
this cookie calculates a digest of all other cookies set on the page, including
those set by the server.

This information is written into a profile cookie that is temporarily stored on
the voter’s computer. This profile cookie has an extremely short life of just 20
seconds, after which it will be deleted. Due to this being loaded during the page
load the remaining requests within the page will send this cookie to the server
before it disappears from the voter machine. As such, unless spotted within the
20 second period, or all requests/responses are being logged by the voter, it will
be difficult for a voter to detect that this profiling cookie was ever set or sent to
the server. The cookie is named utmvc, which is similar to a Google Analytics
cookie (utmv), however, it does not appear to be related. The Google utmv

cookie is a persistent cookie used to store custom variables. The reason for the
choice of naming is not immediately clear.

https://ivote-cvs.elections.wa.gov.au
https://ivote-cvs.elections.wa.gov.au

Cookies and Voting While the concept of profiling and tracking cookies may
seem invasive, there is nothing overtly malicious about this behaviour. Indeed,
the entire web advertising industry is built to perform similar tasks, in order to
track individual users across websites and better serve advertisements.

For Incapsula, the tracking cookie most likely forms part of the DDoS mit-
igation process: Incapsula can determine which requests are likely to be from
legitimate users. Combined with the profiling cookie, Incapsula can perform an
analysis of the requesting device and alter its behaviour accordingly.

In the context of iVote, however, this behaviour poses a significant risk for
voter security. As discussed in the introduction to this article, the iVote system
is designed with the assumption that the encryption and authentication covering
the communication between voter and server (Transport Layer Security, or TLS)
is secure. If a third party has the ability to intercept this communication and
inject malicious JavaScript into server responses, it would be possible to hijack
the entire voting process.

The JavaScript we have witnessed being injected into server responses is non-
malicious, however, there remains the potential for this to not always be the
case. For example, a rogue Incapsula employee or a foreign intelligence service
with access to Incapsula’s systems could alter the injected JavaScript. If this
occurred, it would be possible to steal the iVoteID and PIN from the voter, and
subsequently modify their ballot, with a very low chance of detection by either
the voter or the iVote server itself.

Furthermore, with Incapsula’s cookies already being used to identify voters
between both the registration server and voting server, it would also be trivial
for such an attacker to link voters with their vote, removing the secrecy of their
ballot and opening voters to the risk of vote-buying or coercion.

The device fingerprinting behaviour of the injected JavaScript may also allow
these attacks to be performed in a selective fashion. Recent research by Cao
et al. [6] has shown that these fingerprinting methods can be used to identify
users with a high degree of confidence, even across different browsers on the
same device. This may provide an attacker with the ability to selectively target
individual voters or electoral divisions, and to avoid targeting voters who may
notice changes to the injected JavaScript (such as security researchers).

Proof of Concept. We developed a short script that would leak the iVoteID

and PIN by setting it in the profiling cookie. As such, the information would be
leaked without need for any additional requests, making detection extremely dif-
ficult. Furthermore, due to the original injected script from Incapsula not being
minimised, we were able to construct a malicious injection script that maintained
all the functionality of the original, along with our additional malicious code,
while still maintaining exactly the same length.

To achieve this we added two onChange listeners to the iVoteID and PIN

input boxes. We use these onChange listeners to take a copy of the values entered
and set them inside the profiling cookie. The advantage of this is that we are

not adding any additional cookies, or requests, in order to leak the information,
but instead using an existing side channel.

In order to facilitate this we had to extend the lifetime of the profiling cookie.
During testing we extended it to 1 hour, but realistically it only needs to be
extended by a few minutes, the only requirement is that the cookie exists at the
point the iVoteID and PIN is entered by the voter.

4.2 Foreign Access to TLS Private Keys

In this attack scenario a cloud provider uses the brute force attack described in
Section 2.6 to recover the iVoteID and PIN from the passively observed voterID

value sent by the browser at login time. In comparison to the script injection
attack above, this approach is completely passive and has the benefit of being un-
detectable at the cost of increased computational resources. Any cloud provider,
therefore, must be trusted not to pursue such an attack unless the combined
ID/PIN space was made cryptographically strong.

A more interesting scenario is one in which the cloud provider (a multi-
national company operating in many jurisdictions) must inadvertantly grant a
foreign power the ability to man-in-the-middle an election through the course of
prosecuting an otherwise lawful national security request.

As discussed in Section 3.4, valid TLS certificates for *.elections.wa.gov.
au are served by Incapsula servers worldwide, with the associated TLS private
keys also stored on these servers. The TLS certificates served by Incapsula’s
servers are multi-use certificates covering a number of domains, as described in
Section 3.3. This design has significant implications for the security of the TLS
private keys associated with these certificates.

For example: a foreign government, as part of a legitimate domestic surveil-
lance operation, may request that Incapsula provide access to the TLS private
key for the domain *.example.com served by a PoP located in the foreign coun-
try. If this domain is contained in the same TLS certificate as *.elections.wa.
gov.au, obtaining this private key would also provide the foreign government
with the ability to perform man-in-the-middle attacks on voters using iVote.

5 Additional Findings

5.1 Verifiability

The iVote system incorporates a telephone verification service [1], which allows
a voter to dial a provided number and connect with an interactive voice response
(IVR) system.

The telephone verification service requires the voter’s iVoteID, PIN, and the
receipt number provided by the iVote server after a vote has been successfully
cast. After these three numbers have been provided, the telephone verification
service reads back the list of candidates, in preference order, chosen by the voter
in their completed ballot.

*.elections.wa.gov.au
*.elections.wa.gov.au
*.example.com
*.elections.wa.gov.au
*.elections.wa.gov.au

During the 2015 New South Wales state election, which also used the iVote
system, Halderman and Teague identified several potential attacks against this
telephone verification system [10]. These attacks could allow an attacker who had
manipulated iVote ballots to avoid detection by voters who were attempting to
verify that their vote was cast as intended.

One of these attacks is known as a “clash attack,” and is designed to trick
voters by manipulating the registration and vote confirmation pages to provide
the iVoteID, PIN, and receipt number of a previous like-minded voter with the
same candidate preferences. The previous voter’s ballot has been allowed to
be recorded unmodified, and is then used as verification evidence for multiple
voters. The actual votes of these voters can then be manipulated at-will with
little chance of detection.

Crucially, the clash attack relies on accurate prediction of how a voter will
vote prior to registration, so that they can be provided with the iVoteID and
PIN of a like-minded voter who has submitted an unmodified ballot. In addition,
the attack relies upon providing voters with a PIN rather than allowing them
to choose one. This may raise the suspicions of voters who are aware that the
iVote system is supposed to allow them to choose their own PIN.

For the 2017 WA State Election, the clash attack could be significantly im-
proved as a consequence of Incapsula being used to proxy all voter connections to
both the registration and voting servers. An attacker with access to Incapsula’s
systems could directly link each voter’s registration details with their completed
ballot, provided that the voter registers and votes using the same browser (and
potentially across browsers as well [6]).

Due to Incapsula’s position as a DDoS mitigation service for a number of
other online services, such an attacker would also have the ability to identify
voters (and their likely voting preferences) with significantly more accuracy than
if they only had access to the iVote system itself. This would allow for more
accurate clash attacks to be performed.

5.2 Bypassing DDoS Mitigation

It is assumed that the use of Incapsula’s service to proxy iVote connections was
an attempt to protect the iVote system from potential Distributed Denial of
Service (DDoS) attacks during the 2017 WA state election.

DDoS mitigation services such as Incapsula operate by intercepting connec-
tions to a service (in this case, iVote), thereby hiding the true public IP Ad-
dress of the service. If this protection is applied correctly, any attacker wishing
to attack the iVote system will be forced to do so via Incapsula’s systems—
thereby allowing Incapsula’s robust infrastructure to withstand the attack and
filter legitimate connections through to the iVote system. For this protection to
be effective, the true IP address of the service must be properly hidden from
attackers [19].

During the first several days of voting in the 2017 WA State Election, it was
possible to identify the public IP address of the server hosting the iVote Core
Voting System (CVS) for the WA election (https://ivote-cvs.elections.

https://ivote-cvs.elections.wa.gov.au

wa.gov.au), through specific requests to known iVote infrastructure in Sydney,
NSW. This infrastructure could be publicly identified through DNS queries and
other methods requiring little sophistication on the part of an attacker. With
knowledge of this address, it would have been possible for an attacker to perform
DDoS attacks against the iVote system directly, rendering Incapsula’s protection
ineffective.

Recommended practice for the use of DDoS mitigation services such as In-
capsula is to prevent the identification of the true IP address of the service being
protected, through techniques such as blocking all traffic from sources other than
Incapsula itself [8, 17]. These protections were not correctly implemented for the
WA state election until we noticed the problem, several days after the opening
of iVote, and notified the WAEC.

6 Conclusion

We have shown that utilizing cloud based DDoS protection servers can have
a significant impact on the trust model of an internet based election. Further-
more, we have analysed the increased risks of tracking and interception asso-
ciated with such services, and provided a proof of concept demonstrating how
malicious JavaScript could be injected into a voting client in order to read or
alter completed ballots.

At the time of writing, more than two months after the election, the Western
Australian Electoral Commission has published neither the raw voting data for
iVote, nor the verification success and failure statistics. Even if the votes were
broadly similar to those cast on paper, and the verification failure rate was
small, that would not constitute genuine evidence that the votes were accurately
recorded. A lack of transparency in the process is simply no longer acceptable.
In light of the trusted nature of cloud providers, their single point of failure, and
the remote nature of potential attackers, the need for evidence-based election
outcomes is greater than ever.

Acknowledgements

The authors thank the Western Australian Election Commission for quick ac-
knowledgement and response to our disclosure. Thanks also to Yuval Yarom and
the anonymous reviewers for helpful feedback.

References

[1] How to use iVote. https://www.elections.wa.gov.au/ivote/how-use-
ivote, accessed: 2017-05-15

[2] SSL FAQ, http://support.cloudflare.com/hc/en-us/articles/

204144518-SSL-FAQ

https://ivote-cvs.elections.wa.gov.au
https://ivote-cvs.elections.wa.gov.au
https://www.elections.wa.gov.au/ivote/how-use-ivote
https://www.elections.wa.gov.au/ivote/how-use-ivote
http://support.cloudflare.com/hc/en-us/articles/204144518-SSL-FAQ
http://support.cloudflare.com/hc/en-us/articles/204144518-SSL-FAQ

[3] Adida, B.: Helios: web-based open-audit voting. In: USENIX Security Sym-
posium. pp. 335–348 (2008)

[4] Australian Senate: Economics References Committee: 2016 Census: is-
sues of trust. text (Nov 2016), http://www.aph.gov.au/Parliamentary_
Business/Committees/Senate/Economics/2016Census/Report

[5] Bell, S., Benaloh, J., Byrne, M.D., Debeauvoir, D., Eakin, B., Kortum, P.,
McBurnett, N., Pereira, O., Stark, P.B., Wallach, D.S., Fisher, G., Montoya,
J., Parker, M., Winn, M.: Star-vote: A secure, transparent, auditable, and
reliable voting system. In: Electronic Voting Technology Workshop/Work-
shop on Trustworthy Elections (EVT/WOTE 13) (2013)

[6] Cao, Y., Li, S., Wijmans, E.: (cross-)browser fingerprinting via os and hard-
ware level features. In: Proc. of Network & Distributed System Security
Symposium (NDSS) (2017)

[7] Chaum, D., Carback, R., Clark, J., Essex, A., Popoveniuc, S., Rivest, R.L.,
Ryan, P.Y., Shen, E., Sherman, A.T.: Scantegrity ii: End-to-end verifiability
for optical scan election systems using invisible ink confirmation codes. EVT
8, 1–13 (2008)

[8] Cohen, E.: How to Make Your Website Invisible to Direct-to-Origin DDoS
Attacks. https://www.incapsula.com/blog/make-website-invisible-

direct-to-origin-ddos-attacks.html, accessed: 2017-05-15

[9] Durumeric, Z., Adrian, D., Mirian, A., Bailey, M., Halderman, J.A.: A
search engine backed by Internet-wide scanning. In: Proceedings of the 22nd
ACM Conference on Computer and Communications Security (2015)

[10] Halderman, J.A., Teague, V.: The new south wales ivote system: Security
failures and verification flaws in a live online election. In: International
Conference on E-Voting and Identity. pp. 35–53. Springer (2015)

[11] Jonathan (Yoni) Ben-Nun, Rosen, A., Ta-shma, A., Riva, B.: Wombat vot-
ing system (2012), https://wombat.factcenter.org

[12] Kiayias, A., Zacharias, T., Zhang, B.: Demos-2: scalable e2e verifiable elec-
tions without random oracles. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. pp. 352–363. ACM
(2015)

[13] Lindeman, M., Stark, P.B.: A gentle introduction to risk-limiting audits.
IEEE Security & Privacy 10(5), 42–49 (2012)

[14] MacGibbon, A.: Review of the events surrounding the 2016 eCensus. Text
(Nov 2016), http://apo.org.au/node/70705

[15] National Institute of Standards and Technology (NIST): NIST Special Pub-
lication 800-57, Part 1, Revision 4. Recommendation for Key Management.
Part 1: General (2016)

[16] Ryan, P.Y., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à voter: a
voter-verifiable voting system. IEEE transactions on information forensics
and security 4(4), 662–673 (2009)

[17] Sullivan, N.: DDoS Prevention: Protecting The Origin. https://blog.

cloudflare.com/ddos-prevention-protecting-the-origin/, accessed:
2017-05-15

http://www.aph.gov.au/Parliamentary_Business/Committees/Senate/Economics/2016Census/Report
http://www.aph.gov.au/Parliamentary_Business/Committees/Senate/Economics/2016Census/Report
https://www.incapsula.com/blog/make-website-invisible-direct-to-origin-ddos-attacks.html
https://www.incapsula.com/blog/make-website-invisible-direct-to-origin-ddos-attacks.html
https://wombat.factcenter.org
http://apo.org.au/node/70705
https://blog.cloudflare.com/ddos-prevention-protecting-the-origin/
https://blog.cloudflare.com/ddos-prevention-protecting-the-origin/

[18] Valenta, L., Cohney, S., Liao, A., Fried, J., Bodduluri, S., Heninger, N.:
Factoring as a service. Cryptology ePrint Archive, Report 2015/1000 (2015),
http://eprint.iacr.org/2015/1000

[19] Vissers, T., Van Goethem, T., Joosen, W., Nikiforakis, N.: Maneuvering
around clouds: Bypassing cloud-based security providers. In: Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. pp. 1530–1541. ACM (2015)

[20] Zeifman, I.: The Bits and Bytes of Incapsula SSL Support. https://

www.incapsula.com/blog/incapsula-ssl-support-features.html, ac-
cessed: 2017-05-15

http://eprint.iacr.org/2015/1000
https://www.incapsula.com/blog/incapsula-ssl-support-features.html
https://www.incapsula.com/blog/incapsula-ssl-support-features.html

	Trust Implications of DDoS Protection in Online Elections

